Domino and tromino tiling [Matrix Exponentiation]¶
Time: O(LogN); Space: O(1); medium
We have two types of tiles: a 2x1 domino shape, and an “L” tromino shape. These shapes may be rotated.
XX <- domino
XX <- “L” tromino
X
Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.
Notes:
In a tiling, every square must be covered by a tile.
Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
Example 1:
Input: N = 3
Output: 5
Explanation:
The five different ways are listed below, different letters indicates different tiles:
1. XYZ 2. XXZ 3. XYY 4. XXY 5. XYY XYZ YYZ XZZ XYY XXY
Example 2:
Input: N = 1
Output: 1
Constraint:
N will be in range [1, 1000].
1. Dynamic Programming (Matrix Exponentiation) [O(LogN), O(1)]¶
[1]:
class Solution1(object):
"""
Time: O(LogN)
Space: O(1)
"""
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
def matrix_mult(m1, m2):
return [[sum(a * b for a, b in zip(m1_row, m2_col)) %MOD for m2_col in zip(*m2)] for m1_row in m1]
def matrix_expo(m, pow):
assert pow >= 0 and int(pow) == pow, "Only non-negative, integer powers allowed"
result = [[int(i==j) for j in range(len(m))] \
for i in range(len(m))]
while pow:
if pow % 2:
result = matrix_mult(result, m)
m = matrix_mult(m, m)
pow //= 2
return result
MOD = 10**9 + 7
T = [[1, 0, 0, 1], # #(|) = #(|) + #(=)
[1, 0, 1, 0], # #(「) = #(|) + #(L)
[1, 1, 0, 0], # #(L) = #(|) + #(「)
[1, 1, 1, 0]] # #(=) = #(|) + #(「) + #(L)
return matrix_mult([[1, 0, 0, 0]], matrix_expo(T, N))[0][0] # [a0, a(-1), a(-2), a(-3)] * T^N
[2]:
s = Solution1()
N = 3
assert s.numTilings(N) == 5
N = 1
assert s.numTilings(N) == 1
2. Dynamic Programming [O(N), O(N)]¶
[3]:
class Solution2(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
# Prove:
# dp[n] = dp[n-1](|) + dp[n-2](=) + 2*(dp[n-3](「」) + ... + d[0](「 = ... = 」))
# = dp[n-1] + dp[n-2] + dp[n-3] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + (dp[n-2] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + dp[n-1]
# = 2*dp[n-1] + dp[n-3]
MOD = 10**9 + 7
dp = [1, 1, 2]
for i in range(3, N+1):
dp[i%3] = (2 * dp[(i-1)%3]%MOD + dp[(i-3)%3])%MOD
return dp[N%3]
[4]:
s = Solution2()
N = 3
assert s.numTilings(N) == 5
N = 1
assert s.numTilings(N) == 1